

ADVANCED PARTIAL DIFFERENTIAL EQUATIONS: HOMEWORK 4

KELLER VANDEBOGERT

1. CHAPTER 5, PROBLEM 2

For convenience set $t := \frac{\gamma-\beta}{1-\beta}$. Then, $\beta = \frac{\gamma-t}{1-t}$ and we see:

$$\begin{aligned}
 \frac{|u(x) - u(y)|}{|x - y|^\gamma} &= \frac{|u(x) - u(y)|}{|x - y|^{\gamma-t}|x - y|^t} \\
 (1.1) \quad &= \left(\frac{|u(x) - u(y)|}{|x - y|^{\frac{\gamma-t}{1-t}}} \right)^{1-t} \left(\frac{|u(x) - u(y)|}{|x - y|} \right)^t \\
 &= \left(\frac{|u(x) - u(y)|}{|x - y|^\beta} \right)^{1-t} \left(\frac{|u(x) - u(y)|}{|x - y|} \right)^t
 \end{aligned}$$

And taking the supremum over the above:

$$[u]_{C^{0,\gamma}(U)} \leq [u]_{C^{0,\beta}(U)}^{1-t} [u]_{C^{0,1}(U)}^t$$

Using this:

$$\begin{aligned}
 \|u\|_{C^{0,\gamma}(U)} &\leq \|u\|_{C(U)} + [u]_{C^{0,\beta}(U)}^{1-t} [u]_{C^{0,1}(U)}^t \\
 (1.2) \quad &\leq (\|u\|_{C(U)}^{1-t} + [u]_{C^{0,\beta}(U)}^{1-t}) (\|u\|_{C(U)}^t + [u]_{C^{0,1}(U)}^t) \\
 &\leq (\|u\|_{C(U)} + [u]_{C^{0,\beta}(U)})^{1-t} (\|u\|_{C(U)} + [u]_{C^{0,1}(U)})^t \\
 &= \|u\|_{C^{0,\beta}(U)}^{\frac{1-\gamma}{1-\beta}} \|u\|_{C^{0,1}(U)}^{\frac{\gamma-\beta}{1-\beta}}
 \end{aligned}$$

Where the second to last inequality is standard and is applicable since the sum of the exponents is 1, and the final step uses concavity

Date: September 3, 2017.

since $t < 1$. Then this is precisely the inequality that we are looking for.

2. CHAPTER 5, PROBLEM 3

3. CHAPTER 5, PROBLEM 4

(a). Let v denote the weak derivative of u . Then, $\int_0^x v(t)dt$ is an absolutely continuous function (this is a standard result in real analysis), and for any test function $\phi \in C_0^\infty(U)$:

$$\begin{aligned}
 (3.1) \quad & \int_0^1 \left(\int_0^x v(t)dt - u(x) \right) \phi'(x) dx = \int_0^1 \int_0^x v(t) \phi'(x) dt dx - \int_0^1 u(x) \phi'(x) dx \\
 &= \int_0^1 \int_t^1 \phi'(x) dx v(t) dt - \int_0^1 u(x) \phi'(x) dx \\
 &= \int_0^1 \phi(t) v(t) dt - \int_0^1 u(x) \phi'(x) dx \\
 &= \int_0^1 \phi(x) v(x) dx - \int_0^1 \phi(x) v(x) dx = 0
 \end{aligned}$$

Since ϕ was arbitrary, we conclude that $u(x) = \int_0^x v(t)dt$ a.e, so we are done.

(b). Let $\mathbf{1}_E$ denote a characteristic function on E . Then,

$$|u(x) - u(y)| = \left| \int_0^1 u'(t) \mathbf{1}_{[x,y]} \right|$$

By Jensen's inequality, whenever $p \geq 1$,

$$\int_0^1 u'(t) \mathbf{1}_{[x,y]} \leq \left(\int_0^1 u'(t)^p \mathbf{1}_{[x,y]} \right)^{\frac{1}{p}}$$

Combining all of the above:

$$\begin{aligned}
|u(x) - u(y)| &= \left| \int_0^1 u'(t) \mathbf{1}_{[x,y]} \right| \leq \int_0^1 |u'(t)| \mathbf{1}_{[x,y]} \\
(3.2) \quad &\leq \left(\int_0^1 |u'(t)|^p \mathbf{1}_{[x,y]} \right)^{\frac{1}{p}} \\
&\leq \left(\int_0^1 \mathbf{1}_{[x,y]} \right)^{1-\frac{1}{p}} \left(\int_0^1 |u'(t)|^p \right)^{\frac{1}{p}} \\
&= |x - y|^{1-\frac{1}{p}} \left(\int_0^1 |u'(t)|^p \right)^{\frac{1}{p}}
\end{aligned}$$

Where the final inequality is by Hölder's Inequality. Then we are done.

4. PROBLEM 5

Choose $W \subset\subset U$ with $V \subset\subset W$. Let ϕ_ϵ denote our standard mollifier, and mollify with the characteristic function on W . Since W has compact closure, we know that $\phi_\epsilon * \mathbf{1}_W := \Phi_\epsilon(\mathbf{1}_W) \rightarrow \mathbf{1}_W$ uniformly as $\epsilon \rightarrow 0^+$. This then implies that there exists $\epsilon > 0$ such that $\Phi_\epsilon(\mathbf{1}_W)|_V \equiv 1$ (in this case we could choose any $0 < \epsilon < 1/2\text{dist}(W, \bar{V})$).

Then the support of this mollified function is contained in W by construction and hence this would constitute our cutoff function, since we already know the mollified function is smooth. Then we are done.

5. PROBLEM 6

Let U have a finite cover $\{V_1, \dots, V_N\}$. Then, to each V_i , associate find a ϕ_i as constructed in the previous problem whose support is contained entirely within each V_i , $\phi_i|_U \equiv 1$, and ϕ_i is a smooth function. Then define

$$\psi_i(x) := \frac{\phi_i(x)}{\sum_{i=1}^N \phi_i(x)}$$

By construction, $\sum_i \psi_i \equiv 1$ at every point in U , and the support of each ψ_i is still contained in each V_i . Also, each ψ_i is clearly smooth as the ratio of smooth functions. Then, the collection $\{\psi_i\}$ satisfy the requirements and constitute a partition of unity subordinate to our given cover.

6. PROBLEM 7

Note that $|u|^p \leq |u|^p \alpha \cdot \eta$. We employ the notation of an absorbing constant, where C may not be the exact same constant on each line.

$$\begin{aligned}
 \int_{\partial U} |u|^p dS &\leq \int_{\partial U} |u|^p \alpha \cdot \eta dS \\
 &= \int_U |u|^p \operatorname{div} \alpha + p|u|^{p-1} Du \cdot \alpha dx \\
 (6.1) \quad &\leq C(U, n) \int_U |u|^p + p|u|^{p-1} |Du| \max_i \{\alpha_i\} dx \\
 &\leq C(U, n) \int_U p|u|^p + |Du|^p dx \quad (\text{Young's Ineq}) \\
 &\leq C(U, n, p) \int_U |u|^p + |Du|^p dx
 \end{aligned}$$

And we see that $\int_{\partial U} |u|^p dS \leq C \int_U |u|^p + |Du|^p dx$, as desired.

7. PROBLEM 9

First let $u \in C_c^\infty(U)$. We have:

$$\begin{aligned}
 (7.1) \quad \int_{\partial U} Du \cdot Dudx &\leq \int_U |u| |D^2 u| dx \quad (\text{Divergence Thm}) \\
 &\leq \|u\|_{L^2(U)} \|D^2 u\|_{L^2(U)} \quad (\text{Cauchy-Schwartz ineq})
 \end{aligned}$$

Taking the square root of the above,

$$\|Du\|_{L^2(U)} \leq \|u\|_{L^2(U)}^{1/2} \|D^2u\|_{L^2(U)}^{1/2}$$

By definition of $H_0^1(U)$, we can find a sequence $\{u_k\} \in H^1(U) \cap C_c^\infty(U)$ converging to u in $H^1(U)$. Likewise, by the smoothness of the boundary ∂U , we can extend u to a set V such that $U \subset\subset V$. Then, by density of $C_c^\infty(V)$, we can find a sequence $\{v_k\}$ in $C^\infty(\bar{U})$ such that $v_k \rightarrow u$ in $H^2(U)$. Using this,

$$\begin{aligned}
 (7.2) \quad & \left| \int_{\partial U} (v_k - u_k) \frac{\partial v_k}{\partial \nu} dS \right| = \left| \int_U D(v_k - u_k) Dv_k dx + \int_U (u_k - v_k) D^2 v_k dx \right| \\
 & \leq \int_U |Du_k - Dv_k| |Dv_k| dx + \int_U |u_k - v_k| |D^2 v_k| dx \\
 & \leq \|Du_k - Dv_k\|_{L^2(U)} \|Dv_k\|_{L^2(U)} + \|u_k - v_k\|_{L^2(U)} \|D^2 v_k\|_{L^2(U)} \\
 & \rightarrow 0
 \end{aligned}$$

As $k \rightarrow \infty$. Note that since each u_k vanishes on the boundary, we can also compute the following:

$$\int_{\partial U} (v_k - u_k) \frac{\partial v_k}{\partial \nu} dS = \int_{\partial U} v_k \frac{\partial v_k}{\partial \nu} dS \rightarrow \int_U |Du|^2 dx + \int_U u D^2 u dx$$

By using the divergence theorem. However, on one hand, we see that this tends to 0 as well. Hence:

$$\int_U |Du|^2 dx + \int_U u D^2 u dx = 0$$

But then, identically as in the case for $u \in C_c^\infty(U)$:

$$\begin{aligned}
(7.3) \quad \int_{\partial U} Du \cdot Dudx &\leq \int_U |u| |D^2 u| dx \\
&\leq \|u\|_{L^2(U)} \|D^2 u\|_{L^2(U)} \\
&\implies \|Du\|_{L^2(U)} \leq \|u\|_{L^2(U)}^{1/2} \|D^2 u\|_{L^2(U)}^{1/2}
\end{aligned}$$

As asserted.

8. PROBLEM 10

(a). Rewrite the integral as the hint says. Then, we have:

$$\begin{aligned}
(8.1) \quad \int_U |Du|^p dx &= \sum_i \int_U u_{x_i} u_{x_i} |Du|^{p-2} dx \\
&= \sum_i \int_U uu_{x_i x_i} |Du|^{p-2} + (p-2)uu_{x_i} |Du|^{p-4} Du \cdot Du_{x_i} dx \\
&\leq \sum_i \int_U |u| |u_{x_i x_i}| |Du|^{p-2} + (p-2)|u| |u_{x_i}| |Du|^{p-4} |Du| |Du_{x_i}| dx \\
&\leq \sum_i \int_U |u| |D^2 u| |Du|^{p-2} + (p-2)|u| |Du|^{p-2} |D^2 u| dx \\
&= n(p-1) \int_U |u| |Du|^{p-2} |D^2 u| dx \\
&\leq n(p-1) \left(\int_U |u|^p dx \right)^{1/p} \left(\int_U |Du|^p \right)^{1-2/p} \left(\int_U |D^2 u|^p dx \right)^{1/p}
\end{aligned}$$

Where the above has employed Cauchy-Schwartz and Generalized Hölder's Inequality. Note that $p-1 > 0$ since $p \geq 2$, so our constant does not vanish. Hence by the above string of inequalities, we see that

$$\int_U |Du|^p dx \leq n(p-1) \left(\int_U |u|^p dx \right)^{1/p} \left(\int_U |Du|^p \right)^{1-2/p} \left(\int_U |D^2 u|^p dx \right)^{1/p}$$

Which implies:

$$\left(\int_U |Du|^p dx \right)^{2/p} \leq n(p-1) \left(\int_U |u|^p dx \right)^{1/p} \left(\int_U |D^2 u|^p dx \right)^{1/p}$$

And upon taking the square root:

$$\|Du\|_{L^p(U)} \leq C(n, p) \|u\|_{L^p(U)}^{1/2} \|D^2u\|_{L^p(U)}^{1/2}$$

Where $C(n, p) = (n(p-1))^{1/2}$.

(b). We proceed similarly to part a:

$$\begin{aligned}
 (8.2) \quad \int_U |Du|^{2p} dx &= \sum_i \int_U u_{x_i} u_{x_i} |Du|^{2p-2} dx \\
 &= \sum_i \int_U uu_{x_i x_i} (|Du|^2)^{p-1} + (2p-2)uu_{x_i} (|Du|^2)^{p-2} Du \cdot Du_{x_i} dx \\
 &\leq n \int_U |u| \|D^2u\| (|Du|^2)^{p-1} + (2p-2)|u| (|Du|^2)^{p-1} |D^2u| dx \\
 &= n(2p-1) \int_U |u| \|D^2u\| (|Du|^2)^{p-1} dx \\
 &\leq n(2p-1) \int_U |u| (|Du|^2)^{p-1} dx \cdot \|D^2u\|_{L^\infty(U)} \quad (\text{Hölder's}) \\
 &\leq n(2p-1) \left(\int_U |Du|^{2p} dx \right)^{1-1/p} \|u\|_{L^p(U)} \|D^2u\|_{L^\infty(U)} \quad (\text{Hölder's})
 \end{aligned}$$

So that the above shows

$$\int_U |Du|^{2p} dx \leq n(2p-1) \left(\int_U |Du|^{2p} dx \right)^{1-1/p} \|u\|_{L^p(U)} \|D^2u\|_{L^\infty(U)}$$

Implying

$$\left(\int_U |Du|^{2p} dx \right)^{1/p} \leq n(2p-1) \|u\|_{L^p(U)} \|D^2u\|_{L^\infty(U)}$$

And upon taking the square root of both sides,

$$\|Du\|_{L^{2p}(U)} \leq C(n, p) \|u\|_{L^p(U)}^{1/2} \|D^2u\|_{L^\infty(U)}^{1/2}$$

As asserted (where $C(n, p) = \sqrt{n(2p-1)}$).

9. PROBLEM 11

Consider the mollification of u , denoted u^ϵ . Since U is open and bounded, it has compact closure and hence $u^\epsilon \rightarrow u$ uniformly on U as $\epsilon \rightarrow 0$ in $L^p(U)$. Note that $Du^\epsilon = \eta_\epsilon * Du = 0$. Since $u^\epsilon \in C^\infty(U)$ and $Du^\epsilon = 0$, this implies that u is locally constant. However, U is a connected space so that any locally constant function is globally constant (since $\{x \in U \mid u = c\}$ is clopen).

Letting $\epsilon \rightarrow 0^+$, $u^\epsilon \rightarrow u$ in $L^p(U)$, so that $u^\epsilon \rightarrow u$ a.e in the standard Euclidean norm. But then, since u^ϵ is constant and tends to u a.e, we see that u is constant a.e in U .