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KELLER VANDEBOGERT

1. Chapter 5, Problem 2

For convenience set t := γ−β
1−β . Then, β = γ−t

1−t and we see:

|u(x)− u(y)|
|x− y|γ

=
|u(x)− u(y)|
|x− y|γ−t|x− y|t

=
( |u(x)− u(y)|
|x− y|

γ−t
1−t

)1−t( |u(x)− u(y)|
|x− y|

)t
=
( |u(x)− u(y)|
|x− y|β

)1−t( |u(x)− u(y)|
|x− y|

)t
(1.1)

And taking the supremum over the above:

[u]C0,γ(U) 6 [u]1−t
C0,β(U)

[u]tC0,1(U)

Using this:

||u||C0,γ(U) 6 ||u||C(U) + [u]1−t
C0,β(U)

[u]tC0,1(U)

6
(
||u||1−tC(U) + [u]1−t

C0,β(U)

)(
||u||tC(U) + [u]tC0,1(U)

)
6
(
||u||C(U) + [u]C0,β(U)

)1−t(||u||C(U) + [u]C0,1(U)

)t
= ||u||

1−γ
1−β
C0,β(U)

||u||
γ−β
1−β
C0,1(U)

(1.2)

Where the second to last inequality is standard and is applicable

since the sum of the exponents is 1, and the final step uses concavity
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since t < 1. Then this is precisely the inequality that we are looking

for.

2. Chapter 5, Problem 3

3. Chapter 5, Problem 4

(a). Let v denote the weak derivative of u. Then,
´ x
0
v(t)dt is an ab-

solutely continuous function (this is a standard result in real analysis),

and for any test function φ ∈ C∞0 (U):

ˆ 1

0

( ˆ x

0

v(t)dt− u(x)
)
φ′(x)dx =

ˆ 1

0

ˆ x

0

v(t)φ′(x)dtdx−
ˆ 1

0

u(x)φ′(x)dx

=

ˆ 1

0

ˆ 1

t

φ′(x)dxv(t)dt−
ˆ 1

0

u(x)φ′(x)dx

=

ˆ 1

0

φ(t)v(t)dt−
ˆ 1

0

u(x)φ′(x)dx

=

ˆ 1

0

φ(x)v(x)dx−
ˆ 1

0

φ(x)v(x)dx = 0

(3.1)

Since φ was arbitrary, we conclude that u(x) =
´ x
0
v(t)dt a.e, so we

are done.

(b). Let 1E denote a characteristic function on E. Then,

|u(x)− u(y)| =
∣∣∣ ˆ 1

0

u′(t)1[x,y]

∣∣∣
By Jensen’s inequality, whenever p > 1,

ˆ 1

0

u′(t)1[x,y] 6
( ˆ 1

0

u′(t)p1[x,y]

) 1
p

Combining all of the above:
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|u(x)− u(y)| =
∣∣∣ ˆ 1

0

u′(t)1[x,y]

∣∣∣ 6 ˆ 1

0

|u′(t)|1[x,y]

6
( ˆ 1

0

|u′(t)|p1[x,y]

) 1
p

6
( ˆ 1

0

1[x,y]

)1− 1
p
( ˆ 1

0

|u′(t)|p
) 1
p

= |x− y|1−
1
p

(ˆ 1

0

|u′(t)|p
) 1
p

(3.2)

Where the final inequality is by Hölder’s Inequality. Then we are

done.

4. Problem 5

Choose W ⊂⊂ U with V ⊂⊂ W . Let φε denote our standard mol-

lifier, and mollify with the characteristic function on W . Since W has

compact closure, we know that φε ∗ 1W := Φε(1W )→ 1W uniformly as

ε→ 0+. This then implies that there exists ε > 0 such that Φε(1W )
∣∣
V
≡

1 (in this case we could choose any 0 < ε < 1/2dist(W,V )).

Then the support of this mollified function is contained in W by

construction and hence this would constitute our cutoff function, since

we already know the mollified function is smooth. Then we are done.

5. Problem 6

Let U have a finite cover {V1, . . . , VN}. Then, to each Vi, associate

find a φi as constructed in the previous problem whose support is con-

tained entirely within each Vi, φi|U ≡ 1, and φi is a smooth function.

Then define

ψi(x) :=
φi(x)∑N
i=1 φi(x)
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By construction,
∑

i ψi ≡ 1 at every point in U , and the support of

each ψi is still contained in each Vi. Also, each ψi is clearly smooth

as the ratio of smooth functions. Then, the collection {ψi} satisfy the

requirements and constitute a partition of unity subordinate to our

given cover.

6. Problem 7

Note that |u|p 6 |u|pα · η. We employ the notation of an absorbing

constant, where C may not be the exact same constant on each line.

ˆ
∂U

|u|pdS 6
ˆ
∂U

|u|pα · ηdS

=

ˆ
U

|u|pdivα + p|u|p−1Du · αdx

6 C(U, n)

ˆ
U

|u|p + p|u|p−1|Du|max
i
{αi}dx

6 C(U, n)

ˆ
U

p|u|p + |Du|pdx (Young’s Ineq)

6 C(U, n, p)

ˆ
U

|u|p + |Du|pdx

(6.1)

And we see that
´
∂U
|u|pdS 6 C

´
U
|u|p + |Du|pdx, as desired.

7. Problem 9

First let u ∈ C∞c (U). We have:

ˆ
∂U

Du ·Dudx 6
ˆ
U

|u||D2u|dx (Divergence Thm)

6 ||u||L2(U)||D2u||L2(U) (Cauchy-Schwartz ineq)

(7.1)

Taking the square root of the above,
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||Du||L2(U) 6 ||u||1/2L2(U)||D
2u||1/2L2(U)

By definition of H1
0 (U), we can find a sequence {uk} ∈ H1(U) ∩

C∞c (U) converging to u in H1(U). Likewise, by the smoothness of the

boundary ∂U , we can extend u to a set V such that U ⊂⊂ V . Then,

by density of C∞c (V ), we can find a sequence {vk} in C∞(U) such that

vk → u in H2(U). Using this,

∣∣∣ ˆ
∂U

(vk − uk)
∂vk
∂ν

dS
∣∣∣ =

∣∣∣ ˆ
U

D(vk − uk)Dvkdx+

ˆ
U

(uk − vk)D2vkdx
∣∣∣

6
ˆ
U

|Duk −Dvk||Dvk|dx+

ˆ
U

|uk − vk||D2vk|dx

6 ||Duk −Dvk||L2(U)||Dvk||L2(U) + ||uk − vk||L2(U)||D2vk||L2(U)

→ 0

(7.2)

As k → ∞. Note that since each uk vanishes on the boundary, we

can also compute the following:

ˆ
∂U

(vk − uk)
∂vk
∂ν

dS =

ˆ
∂U

vk
∂vk
∂ν

dS →
ˆ
U

|Du|2dx+

ˆ
U

uD2udx

By using the divergence theorem. However, on one hand, we see that

this tends to 0 as well. Hence:

ˆ
U

|Du|2dx+

ˆ
U

uD2udx = 0

But then, identically as in the case for u ∈ C∞c (U):
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ˆ
∂U

Du ·Dudx 6
ˆ
U

|u||D2u|dx

6 ||u||L2(U)||D2u||L2(U)

=⇒ ||Du||L2(U) 6 ||u||1/2L2(U)||D
2u||1/2L2(U)

(7.3)

As asserted.

8. Problem 10

(a). Rewrite the integral as the hint says. Then, we have:

ˆ
U

|Du|pdx =
∑
i

ˆ
U

uxiuxi |Du|p−2dx

=
∑
i

ˆ
U

uuxixi |Du|p−2 + (p− 2)uuxi |Du|p−4Du ·Duxidx

6
∑
i

ˆ
U

|u||uxixi ||Du|p−2 + (p− 2)|u||uxi ||Du|p−4|Du||Duxi |dx

6
∑
i

ˆ
U

|u||D2u||Du|p−2 + (p− 2)|u||Du|p−2|D2u|dx

= n(p− 1)

ˆ
U

|u||Du|p−2|D2u|dx

6 n(p− 1)
( ˆ

U

|u|pdx
)1/p( ˆ

U

|Du|p
)1−2/p(ˆ

U

|D2u|pdx
)1/p

(8.1)

Where the above has employed Cauchy-Schwartz and Generalized

Hölder’s Inquality. Note that p − 1 > 0 since p > 2, so our constant

does not vanish. Hence by the above string of inequalities, we see that

ˆ
U

|Du|pdx 6 n(p−1)
( ˆ

U

|u|pdx
)1/p( ˆ

U

|Du|p
)1−2/p( ˆ

U

|D2u|pdx
)1/p

Which implies:(ˆ
U

|Du|pdx
)2/p

6 n(p− 1)
( ˆ

U

|u|pdx
)1/p( ˆ

U

|D2u|pdx
)1/p
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And upon taking the square root:

||Du||Lp(U) 6 C(n, p)||u||1/2Lp(U)||D
2u||1/2Lp(U)

Where C(n, p) = (n(p− 1))1/2.

(b). We proceed similarly to part a:

ˆ
U

|Du|2pdx =
∑
i

ˆ
U

uxiuxi|Du|2p−2dx

=
∑
i

ˆ
U

uuxixi
(
|Du|2

)p−1
+ (2p− 2)uuxi

(
|Du|2)p−2Du ·Duxidx

6 n

ˆ
U

|u||D2u|
(
|Du|2

)p−1
+ (2p− 2)|u|

(
|Du|2

)p−1|D2u|dx

= n(2p− 1)

ˆ
U

|u||D2u|
(
|Du|2

)p−1
dx

6 n(2p− 1)

ˆ
U

|u|
(
|Du|2

)p−1
dx · ||D2u||L∞(U) (Hölder’s)

6 n(2p− 1)
( ˆ

U

|Du|2pdx
)1−1/p

||u||Lp(U)||D2u||L∞(U) (Hölder’s)

(8.2)

So that the above shows

ˆ
U

|Du|2pdx 6 n(2p− 1)
( ˆ

U

|Du|2pdx
)1−1/p

||u||Lp(U)||D2u||L∞(U)

Implying

(ˆ
U

|Du|2pdx
)1/p

6 n(2p− 1)||u||Lp(U)||D2u||L∞(U)

And upon taking the square root of both sides,

||Du||L2p(U) 6 C(n, p)||u||1/2Lp(U)||D
2u||1/2L∞(U)

As asserted (where C(n, p) =
√
n(2p− 1)).
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9. Problem 11

Consider the mollification of u, denoted uε. Since U is open and

bounded, it has compact closure and hence uε → u uniformly on U as

ε → 0 in Lp(U). Note that Duε = ηε ∗ Du = 0. Since uε ∈ C∞(U)

and Duε = 0, this implies that u is locally constant. However, U

is a connected space so that any locally constant function is globally

constant (since {x ∈ U | u = c} is clopen).

Letting ε→ 0+, uε → u in Lp(U), so that uε → u a.e in the standard

Euclidean norm. But then, since uε is constant and tends to u a.e, we

see that u is constant a.e in U .


