ADVANCED PARTIAL DIFFERENTIAL EQUATIONS:
HOMEWORK 4

KELLER VANDEBOGERT

1. CHAPTER 5, PROBLEM 2

For convenience set ¢ := 1= g Then, 8 = 1= f and we see:
u(z) —u(y)| _ |u(z) — u(y)]
|z —yp [z =y~ -yl
u(z) —uly)[\ 1=t Julz) —uly)[\*
(1.1) - ( |x—y|g ) < |z — y )
_ (@) —uly) [\t luz) —uly)|?
_< |z —y|? ) ( |z — 9 )

And taking the supremum over the above:

[uleon o) < [ull's g [l

Using this:
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» < (lllg@y + [gols ) (lullow) + o)
1.2

1—t t
< (HUHC vy + [u ]cww)) (NNullew) + u)corw))
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—B
0,1(

= IIUIICM(U lullis )
Where the second to last inequality is standard and is applicable

since the sum of the exponents is 1, and the final step uses concavity
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since t < 1. Then this is precisely the inequality that we are looking

for.

2. CHAPTER 5, PROBLEM 3
3. CHAPTER 5, PROBLEM 4

(a). Let v denote the weak derivative of u. Then, fo t)dt is an ab-
solutely continuous function (this is a standard result in real analysis),

and for any test function ¢ € C§°(U):

/01 (/Ozv(t)dt—u( / / dtdx—/lu(w)¢/(x)dx
/ / ¢ (@)doo(t)dt — / u(2) (2)da
/ o) u(t)dt — / (@) (z)dx
_ /0 o(x)v(x)de — /0 $(z)v(z)de =

Since ¢ was arbitrary, we conclude that u(z) = [; v(t)dt a.e, so we

are done.

(b). Let 1z denote a characteristic function on E. Then,

i)~ )l = | [ 01

By Jensen’s inequality, whenever p > 1,

1 1 1
< ([ worie,)
0 0

Combining all of the above:
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o)~ )l =| [ wen| < [ 1@
< ([ wort.)’
<([ 1) ([ war)
== ([ o)

Where the final inequality is by Holder’s Inequality. Then we are

(3.2)

done.

4. PROBLEM 5

Choose W CcC U with V.CcC W. Let ¢, denote our standard mol-
lifier, and mollify with the characteristic function on W. Since W has
compact closure, we know that ¢, * 1y := & (1) — 1y uniformly as
¢ — 0. This then implies that there exists ¢ > 0 such that ®.(1y) ‘V =
1 (in this case we could choose any 0 < e < 1/2dist(W, V)).

Then the support of this mollified function is contained in W by
construction and hence this would constitute our cutoff function, since

we already know the mollified function is smooth. Then we are done.

5. PROBLEM 6

Let U have a finite cover {V;,...,Vx}. Then, to each V;, associate
find a ¢; as constructed in the previous problem whose support is con-
tained entirely within each V;, ¢;|y = 1, and ¢; is a smooth function.
Then define

¢i()

vl = @
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By construction, ), v; = 1 at every point in U, and the support of
each 1); is still contained in each V;. Also, each 1; is clearly smooth
as the ratio of smooth functions. Then, the collection {u;} satisfy the
requirements and constitute a partition of unity subordinate to our

given cover.

6. PROBLEM 7

Note that |u|? < |u[Pa - n. We employ the notation of an absorbing

constant, where C' may not be the exact same constant on each line.

/\u|pd5</ |ulPa - ndS
ouU ouU

= / lu|Pdiva + plu|P~' Du - adx
U
(6.1) < C(U,n) / (uf? + plul?~| Du| max{a;}dz

U 7

< C(U,n) / plul’ + |Du|Pdx  (Young’s Ineq)
U

<CUnp) [ JuP + |Dupds

U

And we see that [, [u[?dS < C [, |ul? + |DulPdz, as desired.

7. PROBLEM 9

First let u € C2°(U). We have:

(7.1)

Du - Dudx < / |u||D*u|dz  (Divergence Thm)
ouU U
< |ull2an || D?ul| 2@y (Cauchy-Schwartz ineq)

Taking the square root of the above,
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1/2 1/2
|Dull 2wy < |l 25 |1 D2ul [ oty

By definition of H}(U), we can find a sequence {u,} € H (U) N
C>(U) converging to u in H'(U). Likewise, by the smoothness of the
boundary 90U, we can extend u to a set V such that U CC V. Then,
by density of C>°(V), we can find a sequence {v;} in C*°(U) such that
v, — uw in H*(U). Using this,

‘/ Vg — U) %dS‘ = )/ D(vg —uk)kadx—l—/(uk — ) D*vpdx
U

< / | Duy, — Dug||Dvy|dx —|—/ lug — vi || D*vg|de
U U
< |[Dug — Dol | 2l Dvil| 2y + [ — vrl| 2 || Dokl | L2y

—0

As k — o0o. Note that since each uy vanishes on the boundary, we

can also compute the following:

/ (vk—uk)%ds vk%dS%/ ]Du|2dx+/uD2udx
U ov ov U U

By using the divergence theorem. However, on one hand, we see that

this tends to 0 as well. Hence:

/ | Dul*dz + / uD*udx = 0
U U

But then, identically as in the case for u € C°(U):
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| b
U

u-Dudwé/!uHDQu\da:
U
(7.3) < ||u||L2(U)||D2u||L2(U
1/2 1/2
— (1Dl 2wy < [Jull foien) |1 Dl

As asserted.

8. PROBLEM 10

(a). Rewrite the integral as the hint says. Then, we have:

(8.1)
/|Du]pd35: Z/ Uy, Ug, | DulP2dx
U

= E / UlUg,;z;

<X [ tullte,

< Z/ |u|| D*u|| DulP~2 + (p — 2)|u||DulP~?| D*u|dx
—Ju

DulP™2 4 (p — 2)uaty, | Du|P~*Du - Du,,dx

Du|P~ 24 + (p — 2)|u||ug, Du|p’4]Du||Duxi|d:v

—lp—1) / full DulP2| Duldz
U

<atp=n)( [ wpar) ([ pup) ([ iprupas)”

Where the above has employed Cauchy-Schwartz and Generalized
Holder’s Inquality. Note that p — 1 > 0 since p > 2, so our constant

does not vanish. Hence by the above string of inequalities, we see that

[ pupis < ap=0( [ fara) ([ 1pup) ([ 100ras)

Which implies:

(/U|Dulpd:c>2/p <np— 1)(/U|“‘pdx)1/p(/U|D2uypdx)””
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And upon taking the square root:

[1Dul| Loy < Cnp)ul[ 5 1Dl [,
Where C(n,p) = (n(p — 1))/2.

(b). We proceed similarly to part a:

(8.2)
/|Du|2pdx—2/ Ug, Uy, | Du| P2 d
= Z/ Wy, (|1Dul?)?™ + (2p — 2)uty, (|Dul*)P>Du - Duy,dx
/|U||D2U| [Dul)"™" + (2p = 2)[ul (| Dul)"™ | D?ulda
=n(2p — 1)/ ]u||D27¢L|(|Du\2)p_1
U
n(2p — 1)/ |u|(|Du|2)p71dm ||D?ul|peo@ry  (Holder’s)
U

1-1/p . 7
n(2p— 1) / Dude) " lul oo | D%l ey (Hilder's)
U

So that the above shows

1-1/p
[ 1pupras < ntep =) [ 1Duraz) " bl DPulli

Implying

1/p
(/U |Du|2pdx> <n(2p — 1)||u||Lp(U)||D2u||Loo(U)

And upon taking the square root of both sides,

1/2 1/2
[1Dul| 20wy < C(n,p)l[ul 5 1Dl 12 0

As asserted (where C'(n,p) = \/n(2p — 1)).
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9. PROBLEM 11

Consider the mollification of u, denoted u°. Since U is open and
bounded, it has compact closure and hence u¢ — u uniformly on U as
e — 0in LP(U). Note that Du¢ = 7. * Du = 0. Since u* € C*>(U)
and Du® = 0, this implies that u is locally constant. However, U
is a connected space so that any locally constant function is globally
constant (since {x € U | u = ¢} is clopen).

Letting € — 0%, u® = w in LP(U), so that u® — u a.e in the standard
Euclidean norm. But then, since u is constant and tends to u a.e, we

see that u is constant a.e in U.



